Fatigue crack growth in self-standing plasma sprayed tungsten and molybdenum beams with artificially introduced notches subjected to pure bending was studied. Beams width, thickness and length was 4 mm, 3 mm and 32 mm respectively. Fatigue crack length was measured using the differential compliance method and fatigue crack growth rate was established as a function of stress intensity factor. Unusual crack opening under compressive loading part of the cycle was detected. Fractographic analysis revealed the respective crack formation mechanisms. At low crack propagation rates, the fatigue crack growth takes place by intergranular splat fracture and splat decohesion for Mo coating. In W coating, intergranular splat fracture and void interconnection formed the fatigue crack. Frequently, the crack deflected from the notch plane being attracted to stress concentrators formed by porosity. At higher values of the stress intensity factor, the splat intergranular cracking become more common and the crack propagated more perpendicularly to the specimen surface.

This content is only available as a PDF.
You do not currently have access to this content.