Abstract
In order to guarantee their protective function, thermal sprayings must be free from cracks, which expose the substrate surface to e.g. corrosive media. Cracks in thermal sprayings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross-sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology as well as coating defects were inspected using light microscopy on metallographic cross-sections. Additionally, the resulting crack patterns were imaged in 3D by means of X-ray micro-tomography.