Understanding the complex mechanical behavior of stainless steel based composite coatings is important for engineering applications. The focus of this research was on gaining a fundamental understanding of the structure/property relationships that exist during structure formation of the coatings made by new low pressure cold spraying with propellant gas at the temperatures of 800-1000°C (warm spray). While composition is one of the key parameter in determining the final microstructure, the specific warm spray powder shock consolidation parameters (particle velocity and gas temperature) were found to have significant effects on the development of composite structure formation and mechanical properties. Microstructural examination and modeling results revealed that the strain localization mechanism differs from that of adiabatic shear band formation that results in large differences in the ensuing microstructure of the composite coating and its properties.

This content is only available as a PDF.
You do not currently have access to this content.