ZnO films were deposited by solution precursor plasma spray (SPPS) process with different substrate preheating temperatures and torch powers, which were used to study the effects on crystallizations and microstructures. With increasing substrate preheating temperature from 0 °C to 400 °C, ZnO films were always preferential orientation along (002) plane with much higher crystallinity. And more apparent crystallized particles appeared with higher agglomeration degree forming cauliflower-like microstructure under higher preheating temperature. For adjusting hydrogen flow rate, the moderate hydrogen flow rate was the suitable condition for obtaining oriented growth along (002). Besides, all ZnO films under different hydrogen flow rates with a constant preheating temperature as 400 °C were always combined with crystallized particles. Moreover, the increment of torch power makes microstructure becomes denser with less interspace between neighbouring particles. Moreover, it is found that crystallinity and crystallized particles is more dependent on preheating temperature and torch power plays a more important role on densification by two staggered experiments. Taking applications of metal oxides films via SPPS into consideration, choosing moderate substrate preheating temperature and hydrogen flow rate will obtain crystallized particles, unusual preferentially oriented planes and high specific surface area, which is very favourable for optical, electrical, electrochemical properties.

This content is only available as a PDF.
You do not currently have access to this content.