Abstract
Dual layer electrode coating for alkaline water electrolysis was prepared by plasma spraying. For improving performance this work aims at reducing the oxide in electrode coating. Regarding the necessity of obtaining high specific area, atmospheric plasma spray was employed under protection of argon which was used as shrouding gas. Composite cathode was established on Ni-coated perforated steel sheet with crushed and gas atomized Nickel-based alloy powders. The dual-layer structure was a composite of 5 layers of NiAl at the bottom and 10 layers of NiAlMo as the top layer. Microstructure and morphology were studied by scanning electron microscope (SEM). Element content was estimated by energy dispersive spectrometer (EDS). Enthalpy probe was introduced for measuring plasma temperature and velocity as well as gas composition. Numerical calculation was carried out with same condition for better understanding the shrouding effect. The results showed moderate protection by using of arranged gas shrouding. Overall, in the dual layer region, oxygen content was decreased by 0.3%, from 3.46% to 3.15%. With gas shrouding coating exhibited similar element contents as coating sprayed by VPS. However, no obvious difference was observed in microstructure and morphology with or without gas shrouding.