The corrosion resistance of thermal barrier coatings against CMAS deposit at high temperature is significantly affected by the microstructure of the coatings. Enhancing the bonding ratio between splats can reduce the inter-connected pores and then obstructs the penetration of the molten CMAS into the coatings. In this study, atmospheric plasma sprayed ZrO2 contains 8 wt. % Y2O3 (8YSZ) coating with improved lamellar bonding ratios was deposited with full-molten droplets at an enhanced deposition temperature. The microstructure of the dense 8YSZ coating and conventional 8YSZ coating before and after thermal exposure with CMAS were characterized. It was clearly revealed that by adjusting the microstructure and designing a ceramic layer with high bonding ratio, the corrosion resistance of the thermal barrier coating could be enhanced. Moreover, by designing double-ceramic-layer (DCL) TBCs composed of a porous ceramic layer and well-bonded ceramic layer, the TBCs with high CMAS corrosion resistance and low thermal conductivity can be achieved.

This content is only available as a PDF.
You do not currently have access to this content.