Abstract
High-temperature tribology plays an important role in many engineering applications such as metal forming operations and aerospace industry. Several problems in hot-metal forming of high strength steels occur such as oxidation of tool and workpiece surfaces, increased wear of tools and scaling of workpiece. Moreover, operations at elevated temperatures can significantly influence frictional behavior of tool steels. Present research attempts to analyze experimentally and understand tribological behavior of AISI H11 and AISI H13 under dry conditions at room temperatures. High velocity oxy-fuel (HVOF) thermal spray NiCrBSi coating was developed on tool steels. The room-temperature wear performance of uncoated and coated tool steels was evaluated on pin-on-disc tribometer in the laboratory. In-depth analysis of exposed as-sprayed samples was examined with X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS).