Abstract
In this study, Al-SiC composite coatings are produced by cold spraying ball-milled Al powders with different volume fractions of SiC particles. The morphology and microstructure evolution of the powder during ball milling are evaluated along with the effect of SiC content on the microstructure and wear behavior of the coatings. The results show that dense Al-SiC coatings with different volume fractions of SiC particles can be fabricated by cold spraying and that abrasive wear resistance is improved by raising the volume fraction of SiC particles. Wear surfaces indicate that the predominant wear mechanism is gouging of the soft Al matrix in the early stages and cracking and spalling of SiC particles in the latter stages. The dispersed SiC particles serve to protect the matrix from wear products thus raising the wear resistance of the coatings.