In this study, atmospheric and suspension plasma spraying are used to create nickel-based electrodes with enhanced surface area as required for hydrogen production. Optimal spraying conditions were determined using a Taguchi design-of-experiments approach. Electrochemical double-layer capacitance measurements by cyclic voltammetry show that suspension plasma spray coatings have more surface area than coatings produced by atmospheric plasma spraying. SEM micrographs show that the surface microstructure of the sample with the largest surface area contains high amounts of cauliflower-like aggregates with an average diameter of 10 µm. In general, the combination of melted, semi-melted, and resolidified particles leads to the formation of deposits with high porosity, rougher surfaces, and consequently larger surface areas.

This content is only available as a PDF.
You do not currently have access to this content.