Abstract
For the development and quality control of highly electrically conductive coatings, a device is required by which the electric conductivity can be measured. For this purpose a handheld device for measuring the electric conductivity of nonferrous metals in a nondestructive manner was tested. The measurement principle is based on an eddy current sensor which allows determining the electric conductivity within seconds. The method fulfills the demands for using it in the environment of a job shop for thermal spraying. Coatings applied with different thermal spraying methods like cold gas, HVOF, electric arc or flame spraying have been examined. Thus, it will be presented a comparison of the electric conductivity dependent on different spraying methods. Additionally, important edge conditions for spraying and measuring the conductivity of highly electrically conductive coatings like the influence of the oxygen content of the powder, the minimal coating thickness measurable with the device and the influence of the surface roughness onto the measurement were analyzed.