Thermal sprayed coatings produced from ultrafine, near-nano and nano grained powders provide improved properties as compared to conventional (micron size) powders. These ultrafine, near-nano and nano grained materials show significant potential for applications in the aerospace, energy, oil & gas and a great many other industries. A study was conducted to investigate the influence of grain size on the microstructures formed and mechanical properties of conventional, ultrafine, near-nano and nano size WC materials. Powders and coatings as well as consolidated forms of tungsten-carbide-10% cobalt- 4% chromium (WC-10Co-4Cr) and tungsten-carbide- 12% cobalt (WC-12Co) materials are examined. Thermal spray coatings are produced of carbides of several different grain sizes using high velocity oxygen-fuel (HVOF) thermal spray processing. Spark Plasma Sintering (SPS) is performed to provide consolidated forms of WC-10Co-4Cr materials. An examination of the thermal sprayed coatings is conducted using microstructural analysis and mechanical property testing. A brief examination of the wear and bend performance of a near-nano, and nano-enhanced material will be compared to a conventional material (micron sized).

This content is only available as a PDF.
You do not currently have access to this content.