Abstract
Cold spray is a material deposition process that uses a high pressure, high velocity gas jet for the deformation and bonding of particles. However, deposition of brittle or hard materials such as ceramics has not been successful: unless they are co-deposited with a ductile matrix material. This paper examines the WC particle size and its influence on the deposition of Co-based cermets. Micro- and nano-structured powders with similar Co content were employed. Varying the WC particle size influenced significantly the deposition efficiency of the coating process. Micrometer-structured WC-Co feedstocks did not permit coating build up when processed under comparable or elevated thermal spray parameters used for the nanostructured WC-Co feedstocks. In addition, micrometer-structured WC-Co coatings exhibited a conjoint erosion and deposition effect on the surface. Fine WC particles (<1 μm) were observed near to the substrate interface and larger WC particles (1-2 μm) in the vicinity of the coating surface. These observations indicate the existence of a critical WC particle size for deposition by the cold spray method and that the size criteria arises due to the formation and cohesion mechanisms within the coating layer.