Abstract
The gas-cooled fast reactor is a 4th generation nuclear reactor currently under development. Its design concept requires protective coatings able to operate at 850°C and protect the underlying structure in case of extreme cases, where the functional temperature can increase up to 1250°C and there is depressurization from 70 bars to atmospheric pressure. The parts to be covered are made in 1-mm thick materials resistant to heat and erosion with high mechanical properties at high temperatures, such as the Haynes 230 nickel-based alloy. In this study, the potential of the suspension plasma spraying technique for forming the first layers of a ceramic coating on smooth 1-mm thick Haynes substrate was explored. In order to meet these specifications, the coating material selected was partially stabilized zirconia of standard composition (8 mol.% Y2O3-ZrO2).