Abstract
Conventional processes of gas shielded metal arc welding (GMAW) do not offer directly the possibility for cladding heat sensitive materials such as aluminum with iron-based materials due to intermetallic Al/Fe phases form. This paper deals with the first evaluated cladding results of aluminum components with iron-based nanocrystalline solidifying materials by controlled shielded metal arc welding processes to improve wear resistance. In the present work, the design of experiments and data evaluations are systematically applied to get the first results about the dependence between controlled arc welding process parameters and the iron-based coatings of aluminum substrate. In particular, the effect of the chosen parameters such as wire feed speed, welding speed, frequency and further factors on the heat input, welding penetration, micro hardness, rate of welding penetration and width of intermetallic phases in the interface zone are investigated. Optical and scanning electron spectroscopy provide input for further statistical evaluation. The experiments were carried out using various controlled arc technologies which offer different control over the heat input to the substrates. Different power supplies were used.