An adapted HVOF system has been computationally investigated in order to test the effects of injecting a cooling gas on both the gas phase dynamics and particle behaviour through the system. An existing liquid-fuelled HVOF thermal spray gun is modified by introducing a centrally located mixing chamber. The gas phase model incorporates liquid fuel droplets which heat, evaporate and then exothermically combust within the combustion chamber producing a realistic compressible, supersonic, turbulent jet. The trajectory of each discrete phase powder particle is tracked using the Lagrangian approach, with the inclusion of heating, melting and solidification through each particle. The results obtained give an insight to the complex interrelations present between the gas and particle phases, and demonstrates the usefulness of this modelling approach in aiding the development of thermal spray devices.

This content is only available as a PDF.
You do not currently have access to this content.