Abstract
The aim of this work is to investigate the effect of substrate surface chemistry (e.g., oxidation and atom diffusion) on the flattening of a single millimeter-sized alumina drop. To that end, a new technique to produce such drops with different impact velocities has been developed. It consists of a rotating crucible heated by a transferred plasma arc and a piston that controls substrate velocity and, as a result, the impact velocity of the drop. A fast camera working in concert with a fast pyrometer precisely records drop flattening and cooling. This system makes it possible to study interface phenomena, such as desorption and wettability, as well as the effects, at impact, of the kinetic energy or Weber number of the flattening drop.
This content is only available as a PDF.
Copyright © 2009 ASM International. All rights reserved.
2009
ASM International
Issue Section:
Process Diagnostics, Sensors, and Control
You do not currently have access to this content.