Residual stress build up in thick thermal spray coatings is a property of concern. The adhesion of these coatings to the substrate is strongly influenced by the residual stress generation during the coating deposition process. In the HVOF spray process, due to lower processing temperature and higher particle velocity as compared to plasma spraying, significant peening stresses are generated during the impact of semi molten particles on the substrate. The combination of these peening stresses together with quenching and cooling stresses that arise after deposition can be of significant importance. In this paper both a numerical finite element analysis (FEA) method, to calculate peening, quenching and cooling residual stresses, and experimental methods, as Modified Layer Removal Method (MLRM) and Neutron Diffraction analysis, are applied. The investigation is performed for thick Inconel 718 coatings on Inconel 718 substrates. Combined, these numerical and experimental techniques yield a deeper understanding of residual stress formation and a tool for process optimisation. The relationship between the stress state and deposit/substrate thickness ratio is given particular interest.

This content is only available as a PDF.
You do not currently have access to this content.