Abstract
HVOF-sprayed carbide based coatings such as WC/Co or Cr3C2/NiCr are industrially well established for wear and corrosion protection applications. Due to their high carbide content of typically 75 wt.-% and more, they are providing a very high hardness and excellent wear resistance. Unfortunately costs for matrix materials like Ni or Co underlie strong fluctuations and are significant higher compared to iron. Therefore an alternative concept to the conventional carbides is based on TiC-strengthened low cost Fe-base materials, which are already in use for sintering processes. Depending on the carbon content the Fe-base material can additionally offer a temperable matrix for enhanced wear behaviour. Within this study the sprayability of TiC-strengthened Fe-powders with a gaseous and a liquid fuel driven HVOF-system has been investigated. The resulting coatings have been analysed with respect to microstructure, hardness and phase composition and compared to galvanic hard chrome, HVOF-sprayed and remelted NiCrBSi and HVOF-sprayed Cr3C2/NiCr (80/20) coatings as well as sintered Fe/TiC reference materials. Furthermore the Fe/TiC coatings have been heat treated to proof the retained temperability of the Fe-matrix after thermal spray processing. For determination of wear properties tribometer tests have been conducted. Currently the corrosion resistance of the sprayed Fe/TiC coatings is investigated as well the wear behaviour in a practical hydraulic test bench.