One important aspect concerning the coating of surfaces using thermal spray is the improvement of the injection of material particles into the gas jet and thus the deposition efficiency. Therefore a better knowledge of the temperature distribution within the jet is relevant in order to optimize spraying conditions. Particularly interesting is the existence of a well-defined threefold finger structure in the plasma jet produced by triple electrode torches, which allows an efficient injection of coating material due to the existence of zones with higher and lower viscosity. The jet structure, however, lacks rotational symmetry and can therefore not be analyzed by systems relying on the validity of the Abel inversion, thus new systems have to be developed. In this work an innovative tomography device is described that has been designed for this purpose. By circling half around the plasma jet and taking simultaneously intensity images under different view orientations, a three-dimensional intensity distribution of the jet is generated, which can be used to determine the temperature distribution.

This content is only available as a PDF.
You do not currently have access to this content.