Abstract
FeAl Intermetallic compounds have excellent wear resistance and high temperature oxidation resistances. The low temperature brittleness makes intermetallic compound materials more suitable to be applied in the form of coating to protect materials from high temperature oxidation and wear. In the present study, a iron/aluminum composite coating was produced by cold spraying of iron and aluminum powder mixtures and then was annealed at different temperatures to aim at forming an iron aluminide intermetallic based coating. The deposition behavior of iron and aluminum powder mixtures and microstructural characteristics of the as-sprayed deposit were examined by scanning electron microscopy (SEM). The kinetics of the phase transformation of the as-sprayed iron/aluminum composite deposit to iron aluminide was characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results showed that after heat treatment at a temperature of 600°C, intermediate phase Al5Fe2 coexisted in the deposit with remaining Fe and Al. With increasing heat treatment temperature to 900°C, the deposits consisted of mainly FeAl phase and a trace of remaining Fe phase.