Abstract
The cavitation erosion result mass loss. Welding is the most common technique used to recover the geometrical profile of the blades. However it is known that tensile residual stress can develop. The search for manufacture process that could reduce or eliminate the residual stress level will contribute for a longer life service. The target in this study to evaluate the potential of ASP thermal spray to recover surfaces. The influence of processing parameters on the cavitation resistance and mechanisms was evaluated for three alloys, AWS309LT1, AWS410NiMo and a Co stainless steel known as Cavitec. Coatings were analyzed by optical and electronic microscopy, microhardness and cavitation tests regarding the effect of air pressure. The results showed that lamellae morphology, oxide volume fraction and cavitation resistance were modified by the ASP parameters. The increase in the pressure modified the oxide fraction from 26 to 37% in AWSI309LT1, 23 to 31% for AWS410NiMo and 16 to 23% for Cavitec. Mass loss varied from 3.5 to 4.8 mg/h for AWSI309LT1, 6.65 to 18.19 mg/h for AWS410NiMo, and 3.4 to 4.0 mg/h for Cavitec; the best performance occurred with Cavitec and was associated with higher pressure of deposition and minor oxide volume fraction.