Abstract
Thermally sprayed titanium suboxide (TiOx) coatings are widely used in industrial applications due to their good tribological properties and their electrical conductivity. These properties are mainly dependent on the amount of oxygen in the crystal lattice. Oxygen defects lead to the formation of so-called Magnéli phases. The range of applications is limited by the fact that TiOx tends to reoxidize in many service conditions, especially at elevated temperatures. Also, the extreme conditions in the flame or torch used in the thermal spray process lead to undefined phase changes and defects. In the TiO2-Cr2O3 system, Magnéli phases are also formed, but it is assumed that the properties do not change due to oxidation during spraying and subsequent use. This work shows the possibilities of the new coating materials. Powders with different TiO2 and Cr2O3 contents and prepared by different technologies were used for the investigation of coating properties. Experimental powders with defined phase compositions were prepared. The powders were thermally sprayed and the coatings investigated in terms of phase composition, microstructure, hardness, and abrasion wear resistance.