Abstract
The newly designed abradable coatings are usually validated by rig tests, where samples are rubbed by the contact of a dummy blade with given running speed and incursion rate, simulating actual working conditions in an aircraft engine. The aim of this work was to develop a model of abradable coating rig tests, allowing extensive studies on the influence of coating properties and test conditions on the thermal behaviour of the system. The proposed model includes several steps implementing different numerical tools. Firstly, a relevant structural description of an abradable coating is obtained from micrographs, using an original image analysis route. FE (Finite Element) calculations based on this description allow then to estimate the coefficients of an anisotropic elastic law of mechanical behaviour. Furthermore, a plasticity law is deduced from a FE simulation of the material HR15Y hardness. These parameters are used as input of a FE simulation of a single blade-to-coating rubbing hit, resulting in calculated stresses and temperatures. Finally a global approach of the complete abradability test, based on the results obtained from the simulation of a single hit and on various assumptions, provides predictions of the blade and coating temperature variations versus time during a complete abradability test.