Process mapping is an ideal method for tracking coating characteristics in the thermal spray process. With the increased utilization of in-flight particle diagnostic tools in recent years it is now possible to quickly and effectively characterize inflight powder particle properties. With industries' increasing understanding of the relationship of these properties and coating characteristics, it is now possible to rapidly understand the implications of in-process changes with respect to coating performance. This paper is an exploratory exercise that describes the utilization of process mapping of in-flight particle velocity and temperature characteristics to optimize tungsten carbide (WC) coatings sprayed with a High Velocity Plasma torch (HVP). Key performance factors of WC coatings include high inherent hardness, low porosity and neutral to compressive stress conditions. The combination of these factors all contribute to the coatings' overall success in it's intended application and elude to its toughness, wear resistance, corrosion resistance and general ability to protect the required components. Presently, the High Velocity Oxygen Fuel (HVOF) and High Velocity Liquid Fuel (HVLF) combustion processes are the favored method of applying dependable and commercially viable WC coatings that meet all of these criteria.

This content is only available as a PDF.
You do not currently have access to this content.