Abstract
Atmospheric plasma spraying has emerged as a cost-effective alternative to traditional sintering processes for solid oxide fuel cell (SOFC) manufacturing. However, the use of plasma spraying for SOFCs presents unique challenges, mainly due to the high porosity required for the electrodes and fully dense coatings required for the electrolytes. By using optimized spray conditions combined with appropriate feedstocks, SOFC electrolytes and electrodes with required composition and microstructure could be deposited with an axial plasma spray system. In this paper, the challenges for manufacturing SOFC anodes, electrolytes, and cathodes are addressed. The effects of plasma parameters and different feedstocks on coating microstructure are discussed, and examples of optimized coating microstructures are given.