Abstract
Splats formed during a thermal spray process may be either highly fragmented or intact and disk-like. To predict this change in splat morphology, a dimensionless solidification parameter (Θ), which takes into account factors such as the substrate temperature, splat and substrate thermophysical properties, and thermal contact resistance between the two, has been defined. Θ is the ratio of the thickness of the solid layer formed in the splat while it is spreading, to the splat thickness. The value of Θ can be calculated from simple analytical models of splat solidification and spreading. If the solid layer growth is very slow (Θ << 1), the droplet spreads out to a large extent. Once it reaches maximum spread it becomes so thin that it ruptures, producing fragmented splats. If, however, the solid layer thickness is significant (Θ ~ 0.1 – 0.4), the droplet is restricted from spreading too far and does not become thin enough to rupture. Under such circumstances, disk-type splats are expected. When the solid layer growth is rapid (Θ~1), spreading of the droplet is significantly obstructed by the solid layer, producing splats with fingers around their periphery. Predictions from the model are compared with experimental data.