Al-Sn plain bearings for automotive applications traditionally comprise a multilayer structure. Conventionally, bearing manufacturing involves casting the Al-Sn alloy and roll¬bonding to a steel backing strip. Recently, high velocity oxy- fuel thermal spraying has been employed as a novel alternative manufacturing route. The present project extends previous work on ternary Al-Sn- Cu alloys to quaternary systems, which contain specific additions for potentially enhanced properties. Two alloys were studied in detail, namely Al-20wt.%Sn-lwt.%Cu-2wt.%Ni and Al-20wt.%Sn-lwt.%Cu-7wt.%Si. This paper will describe the microstructural evolution of these alloys following HVOF spraying onto steel substrates and subsequent heat treatment. Microstructures of powders and coatings were investigated by scanning electron microscopy and phases identified by X-ray diffraction. Coating microhardnesses were determined in both as-sprayed and heat treated conditions and differences related to the microstructures which developed. Finally, the wear behaviour of the sprayed and heat treated coatings in hot engine oil was measured using an industry standard test and compared with that of conventionally manufactured Al-Sn bearings.

This content is only available as a PDF.
You do not currently have access to this content.