Abstract
Nanostructured titania (TiO2) coatings were produced by high velocity oxy-fuel (HVOF) spraying. They were engineered as a possible candidate to replace hydroxyapatite (HA) coatings produced by air plasma spray (APS) on implants. They exhibited mechanical properties, such as hardness and bond strength, much superior to those of APS HA coatings. In addition to these characteristics, the surface of the nanostructured coatings exhibited regions with nanotextured features originating from the semi-molten nanostructured feedstock particles. This nanotexture is considered an asset, due to its better interaction with the adhesion proteins of the osteoblast cells, such as fibronectin, which exhibit dimensions in the order of nanometers. Osteoblast cell culture demonstrated that this type of coating supported osteoblast cell growth and did not negatively affect cell viability.