Abstract
Cored wires and high velocity arc spraying technique (HVAS) were used to produce high Mg content Zn-Al-Mg alloy coatings on low carbon steel substrates. The microstructures, mechanical properties and electrochemical corrosion behaviors of the Zn-Al-Mg coatings were investigated comparing with Zn and Zn-Al alloy coatings. And the electrochemical corrosion mechanisms of the coatings were discussed. The coatings show a typical aspect of layered thermal sprayed material structure. Chemical analysis of the coating indicated the composition to be Zn-14.9Al-5.9Mg-3.0O (wt.%). The main phases in the coatings are Zn, Mg2Zn11, Al12Mg17 and MgAl2O4, together with a little Al2O3 and ZnO. The Zn-Al-Mg coatings show higher electrochemical corrosion resistance in salt solution than Zn-Al coatings. The corrosion potential of Zn-Al and Zn-Al-Mg coatings decreased a little and then increased towards the noble potential. The analysis of XRD and Electrochemical impedance spectroscopy (EIS) shows that, with addition of Mg, the corrosion products can block off the pores in the Zn-Al-Mg coating, which is so-called self sealing, and thus prevent attack on the underlying steel substrate.