Abstract
Neutron absorbers are expected to play an important role in the long-term storage of spent nuclear fuels and nuclear wastes. High neutron absorbing capability, long-term stability, and the capacity to stay with the fuel are important criteria in preventing critical conditions during possible waste package degradation in geological time frames. Existing available neutron absorbing materials are based on boron or boron-10 isotope modifications of austenitic stainless steels or to aluminum based metal matrix composites. Specific rare earths such as gadolinium, samarium, or europium are found to have much higher thermal neutron cross section than boron or boron-10 but have high reactivity which limit their stability and ultimate applicability. In this paper, it is described how it is possible through a nanotechnology approach, to overcome the solubility and stability limitations of conventional materials to allow incorporation of high amounts of boron and rare earths into advanced HVOF coatings. During the development of the NeutraShieldTM Coatings, it was found that high fractions of rare earth elements such as gadolinium along with high concentrations of boron could be dissolved in the liquid melt and then remain soluble in the metallic glass structure. During the transformation of the glass to the nanocomposite structure, the rare earths are found to come out of supersaturated solid solution to form stable nanoscale ternary intermetallic R2Fe14B phases which form in a commensurate fashion and is protected by the highly noble matrix. Abstract only; no full-text paper available.