Abstract
Cold spray, a new member of the thermal spray process family, can be used to prepare dense, thick metal coatings. It has tremendous potential as a spray forming process. However, it is well known that significant cold work occurs during the cold spray deposition process. This cold work results in hard coatings but relatively brittle bulk deposits. We have investigated the mechanical properties of cold sprayed aluminum and the effect of annealing on those properties. Cold spray coatings approximately one centimeter thick were prepared using three different feedstock powders: Valimet H-10, Valimet H-20, and Broadman Flomaster. ASTM E8 tensile specimens were machined from these coatings and tested using standard tensile testing procedures. Each material was tested in two conditions: as-sprayed and after a 300°C, 22 h air anneal. The as-sprayed material showed high ultimate strength and low ductility, < 1% elongation. The annealed samples showed a reduction in ultimate strength but a dramatic increase in ductility, up to 10% elongation. The annealed samples exhibited mechanical properties similar to wrought 1100 H14 aluminum. Microstructural examination and fractography clearly showed a change in fracture mechanism between the as-sprayed and annealed material. These results indicate good potential for cold spray as a bulk forming process.