Development of new, low-cost methods for spraying near net shapes of Titanium and Titanium alloys is critical for many industries and applications. Direct fabrication technologies would have an impact on many industries because of the potential to quickly manufacture complex parts or additive features with minimal waste. However, currently used high temperature spray technologies (Lasform, thermal spray methods) involve melting and solidification. Each new layer starts out molten, then solidifies, and must eventually cool to room temperature. This report presents results of feasibility tests for development of a new method of direct fabrication of Ti alloy parts at near-net shapes (nns) using the Cold Spray process (CSP). Several Ti-6Al-4V powders including gas atomized, plasma atomized, and hydride dehydride were tested in these experiments. Feedstock powders were characterized for particle size distribution, morphology, chemical composition, hardness, and deposition efficiency. Coatings in thicknesses of 2 mm were sprayed for evaluation of microstructure, hardness, and porosity. Thick rectangular prisms (10 mm) were sprayed for machining tensile specimens. The material properties of as sprayed and post treated coatings by heat-treating and hot isostatic pressing (HIPing) on material properties was studied. Analysis showed that after HIPing the density of sprayed Ti-6Al-4V coupons is near 100% and material properties met or exceed those of wrought material.

This content is only available as a PDF.
You do not currently have access to this content.