Deposition of copper by cold gas dynamic spraying has attracted much interest in recent years because of the capability to deposit low porosity oxide free coatings. However, it is generally found that as-deposited copper has a significantly greater hardness, and potentially lower ductility, than bulk material. This paper will describe work undertaken to investigate the effect of annealing heat treatments on the structure and mechanical properties of freestanding cold sprayed copper. After de-bonding from substrates these tracks were annealed for one hour at a range of temperatures up to 600 °C. Optical microscopy, scanning electron microscopy and X-ray diffraction were all employed to examine the microstructure. The peak widths in XRD were analysed according to the Hall – Williamson method so that changes in grain size and microstrain (i.e. dislocation content) could be quantified. Mechanical behaviour of the deposits was studied by microhardness measurements and tensile testing. The influences of annealing on mechanical properties are rationalised in terms of microstructure evolution and its effect on strengthening and recrystallization mechanisms in metals. The softening behaviour of cold sprayed Cu is explained considering the low stacking fault energy of Cu and the possibility of dynamic recystallization occurring during spraying.

This content is only available as a PDF.
You do not currently have access to this content.