Abstract
Continuously graded yttria stabilized ZrO2(YSZ) /NiCoCrAlY coatings were prepared using a high efficiency supersonic plasma-spray system and the thermal shock properties of the coatings were studied. The specimens were so prepared that the two kinds of powders with different melting point were fed to the different regions of the plasma jet by using two powder feeders. The two powders melted perfectly at the same power, and the overheating of the powder with lower melting point was avoided. In this way, a continuously graded transition layer was obtained. The Results show that the continuous change of the coefficients of thermal expansion and thermal conductivity in the transition layer leads to a excellent thermal shock resistance of the totally 0.9mm thick TBCs. The thermal shock cycles of the specimens which underwent heating by oxygen-acetylene flam to 1200 and then quenching into water reached more than 200. The coatings’ surface was still perfect without any visible cracks after the thermal shock test. The analysis shows that the dense structure and the sufficient plastic deformation of the particles depressed the formation of TGOs, which, together with the continuously graded thermal expansion coefficient and thermal conduction coefficient, contributes to the long thermal shock resistance of the coatings.