Abstract
Especially, composites of aluminium metal foams are of high potential for lightweight applications in automotive, aerospace and general engineering because of their excellent ratio of low weight and high stiffness. To fulfill the industrial need for these new materials as soon as possible, a new integrated manufacturing process concept has been developed and studied at our institute. The new “easyFoam-process” concept consists of four basic steps: production of semi-finished parts via the powder metallurgical route, forming of the foamable semi-finished part into a near net shape by extrusion or any standard aluminium-forming process, coating of the surface by thermal spraying and foaming by inductive heating. Thus it’s feasible to provide a fast, continuous and efficient production of metal foam composites with highly reproducible properties, resulting in eminent advantages over current techniques for foam sandwich production in terms of degree of anisotropy, statistical spread in foam properties and production economy. This process is also the only one being able to produce a graded pore structure in symmetrical parts of PM-aluminium foams. The thermally sprayed coatings serve simultaneously as mould and as future multifunctional coating. In this paper, some results of our first study in coating the foamable Al-tubes and inductive heating the coated parts are presented.