Abstract
The heat and momentum transfer of the plasma to the injected particles is an important issue in coating formation during plasma spraying. In this study, the plasma temperature and velocity of a Triplex-I torch was measured by means of an enthalpy probe system. Additionally, the properties of injected yttria-stabilized-zirconia powder of a fine sized fraction were recorded spatially resolved by using a DPV2000 system. The plasma temperature and velocity are decreasing by increasing the distance from 45 to 60 mm with respect to the torch exit by approximately 50% from initially 6200°C and 400 m/s, respectively. In contrast, the particles gain temperature up to the melting point at 70 mm stand-off distance as well as the velocity rises up to its highest value of 115 m/s at the maximum flow rate of the particles. Both, plasma and particle characteristics were used to obtain a deeper insight on heat- and momentum transfer of the plasma jet to the single particles.