Abstract
The study of heat transfers in a substrate exposed to an impinging plasma jet is proposed using two different software products. Thermal exchanges between the plasma jet and the substrate were first calculated using the PHOENICS CFD software in which a two-layer extension to the Chen-Kim k-s model was implemented in order to consider both the turbulent nature of the plasma jet and heat transfer phenomena through the viscous sub-layer formed at the surface of the substrate. The model is supposed to provide accurate predictions of thermal exchanges. However this preliminary step is not described since it is part of some previous studies. In a second step, two different commercial software products are used to perform three dimensional transient calculations of the heat conduction inside the substrate. The first approach consists in the use of the finite element based SYSWELD software whereas the second one consists in the use of the finite volume based PHOENICS software. Numerical results are presented and compared for the case of an impinging plasma jet displacing linearly on the substrate. Additionally, the influence of different parameters such as the substrate sample thickness, the stand-off distance, the displacement velocity or the nature of the substrate is also discussed. The results show a good accordance between numerical predictions obtained using the two methods concerning the maximum temperature observed. These results are useful since the substrate temperature is known to have an important influence on the coating adhesion and properties.