Abstract
A numerical model is presented for the computation of heat transfers during the APS thermal spray process. This model includes the contributions of both the impinging plasma jet and that of the particle flux on the substrate heating. The contribution of the impinging plasma jet is taken into account using a computational fluid dynamic model describing the impact of the plasma jet on the substrate. For this part of the work, a two-layer extension to the Chen-Kim k-s model was used allowing the description of both the turbulent plasma jet and that of the flow in the viscous sub-layer formed on the substrate surface. The contribution of the sprayed particles is taken into account considering their distribution in the spray jet. Since this is an important parameter that could affect the model accuracy, measurements of the deposit thickness profiles were first performed using the non-destructive acoustic microscopy method and the corresponding particle flux distribution was then deduced. Heat transfers inside the substrate were then computed using a three dimensional in-house code based on a finite volume approach. In the case studied, the results show that the contribution of the sprayed particles forming the coating is much more focalized than that of the plasma flow itself whereas the substrate nature has a strong influence on the thermal flux dissipation (not presented in the following). These elements are expected to provide useful information concerning the coating adhesion mechanisms and the formation of residual stresses during the coating elaboration.