The aim of this preliminary investigation was to ascertain the synergetic potential of two process technologies of thermally spraying and HIPing (Hot Isostatic Pressing) for tribological applications and address the key design factors, which need to be considered for successful applications of HIPed thermal spray WC-NiCrBSi coatings. The relative performance of the as-sprayed and hot isostatically pressed WC-NiCrBSi functionally graded coatings was investigated in sliding wear conditions. Results indicate that HIPing post-treatment can improve the sliding wear resistance of WC-NiCrBSi coatings. These coatings were deposited by a High Velocity Oxy-Fuel - JP5000 system and HIPing process was carried out at two different temperatures of 850°C and 1200°C. This study shows that un-capsulated HIPing can be successfully applied to functionally graded WC-NiCrBSi coatings, which has economical as well as technical incentives for industrial applications. Sliding wear tests were carried out using a high frequency reciprocating ball on plate rig using steel and ceramic balls. Results are discussed in terms of powder manufacture method, microstructural investigations, phase transformation, mechanical properties and residual stress investigations. Phase analysis by X-ray diffraction revealed transformations, which altered the phase composition such as the elimination of secondary phase W2C and metallic W and the formation of new phases containing Ni, Si and B after the post-treatment. The measurements of hardness, Young’s modulus and residual stress indicate that substantial improvements can be achieved due to simultaneous application of temperature and pressure during the HIPing post-treatment. Hardness and Young’s modulus measured by indentation method, increased after the HIPing process due to the transformations in the morphology and phase composition of the coatings. The residual stress evaluations by sin2Ψ technique using synchrotron x-ray diffraction showed a relaxation of residual stress fields in the coating with increasing temperature of the HIPing process.

This content is only available as a PDF.
You do not currently have access to this content.