Superalloy substrates coated with plasma sprayed CoNiCrAlY bond coats and yttria-stabilized zirconia top coats have been subjected to a high heat flux in a controlled atmosphere chamber. The sintering exhibited by the top coat under these conditions has been studied and compared with the behavior observed during isothermal heating, both when attached to the substrate and when detached. Sintering has been characterized by (a) microstructural examinations, (b) dilatometry, in both in-plane and through-thickness directions, and (c) stiffness measurements, using both cantilever bending and nanoindentation. A numerical heat flow model has been used to explore the stress state under isothermal and thermal gradient conditions. Sintering proceeds faster at higher temperature, but is retarded by the presence of tensile stresses (from differential thermal expansion between coating and substrate) within the top coat. Sintering occurs preferentially near the free surface of the top coat under gradient conditions, not only because of the higher temperature, but also because the in-plane stress is more compressive in that region.

This content is only available as a PDF.
You do not currently have access to this content.