CaZrO3 is a material for thermally sprayed ceramic coatings to which so far only a little attention was paid. This material has a high melting point, good thermal stability and a coefficient of thermal expansion close to that of steel. In this paper water stabilized plasma spraying (WSPR) and atmospheric plasma spraying (APS) were used to prepare CaZrO3 coatings. The spraying feedstock was prepared from fine CaZrO3 powder by agglomeration (spray drying) and sintering. Powders with three different particle sizes (- 45 + 20 µm, - 63 + 45 µm and -90+63 µm) were used in the experiments. The coarse fractions were used for WSP spraying, while the fine one was sprayed with the APS process. Plasma sprayed materials were studied from the point of view of phase changes and influence of the powder size on structure of coatings. The changes of phase composition were studied by X-ray diffraction on coatings as well as on free flight particles. Formation of a cubic phase with a reduced content of CaO in comparison to CaZrO3 was observed. Its formation is probably connected with evaporation of CaO during spraying. This cubic phase is similar to the phase obtained by spraying of ZrO2+5%CaO. Plasma sprayed coatings were characterized by light and scanning electron microscopy (SEM) and by density and porosity. Coefficients of thermal expansion of plasma sprayed layers from CaZrO3 were measured.

You do not currently have access to this content.