Previous studies have shown that gas shrouding is an effective means for controlling oxidation during HVOF spraying. In this present work, the authors attach a gas shroud to an oxyfuel torch with a longer barrel to further investigate the correlation between the state of HVOF sprayed particles and the density and oxygen content of the resulting layers. It is shown that with gas shielding, extended barrel length, and optimized spraying parameters, it is possible to accelerate powder particles to a velocity of over 750 m/sec with maintaining a high molten fraction, thereby producing very dense (zero porosity) stainless steel layers with oxygen contents less than 0.2% by weight. Paper includes a German-language abstract.

This content is only available as a PDF.
You do not currently have access to this content.