Abstract
Arc spraying is an economical method for applying metallic layers due to its high spray rates and uniform melting of spray particles. The main disadvantage is the difficulty in achieving sufficient particle velocity to ensure good layer adhesion. This study investigates the influence of nozzle geometry, arc power, and gas pressure on the size and velocity of particles in an arc spray jet. The experiments were conducted using particle image velocimetry (PIV) to measure the spatial and velocity distribution of particles in flight. For X45Cr13 steel, particle velocities were found to be between 85 and 95 m/s at a gas volume flow of around 1 m3/min. Velocities of up to 150 m/s were ultimately achieved, but at the expense of higher atomizer gas consumption. Paper text in German.