Laser post-treatments and plasma-laser hybrid spraying processes are increasingly being used to extend the service life of thermal barrier coatings by making them more resistant to thermal shock. Studies show that laser-induced cracking plays a major role in the improvements achieved. The investigation of such modified layers can be difficult, however, because the stresses associated with metallographic procedures can alter the structural features of segmented microcracks and damage the specimen. In this research, laser treated and laser hybrid sprayed thermal barrier coatings are vacuum impregnated with fluorescent epoxy resins in order to study their microstructure and its relationship with thermal shock resistance. All relevant processes are described along with crack formation behaviors. Paper includes a German-language abstract.

This content is only available as a PDF.
You do not currently have access to this content.