Technological properties of thermally sprayed deposits are to a great extent related to the underlying microstructure. The present project aims to relate macroscopic properties of metallic coatings to their microstructure. For this purpose, thermally sprayed deposits of nickel based alloys (NiCr, NiCrAlY) were manufactured by various spraying techniques - atmospheric and vacuum plasma spraying, flame spraying, high velocity oxygen fuel and water-stabilized plasma spraying. One of the key microstructural features is the void system. This system is usually characterized by the total volume of voids, the so called porosity. An additional characteristic parameter of the void system is the specific surface area. The method of anisotropic Small Angle Neutron Scattering (SANS) in the "Porod Regime" allows the determination of the anisotropic specific surface area of the complex void system that consists of intralamellar cracks and interlamellar pores. In contrast to optical microscopy, the SANS technique is capable of resolving the pore structure down to the nanometer scale, and the measured specific surface area represents a statistically relevant average value for the whole illuminated sample volume which is usually a few mm3. Besides the presence of voids and cracks the performance of thermally sprayed coatings is also significantly influenced by residual stresses. In the present work residual strains were determined by the technique of neutron diffraction as well as by bending tests, i.e. laser profilometry of the substrate before and after the spraying process. The specific surface area and the residual stresses are discussed with respect to total porosity, the presence of secondary phases like oxides and wear behavior. Special attention is drawn to the anisotropy of the apparent surface area, which is discussed with respect to the anisotropy of macroscopic properties like electrical resistance.

This content is only available as a PDF.
You do not currently have access to this content.