Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Surface analysis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2022, ISTFA 2022: Tutorial Presentations from the 48th International Symposium for Testing and Failure Analysis, n1-n76, October 30–November 3, 2022,
Abstract
View Papertitled, Charged Particle Systems—Fundamentals and Opportunities (2022 Update)
View
PDF
for content titled, Charged Particle Systems—Fundamentals and Opportunities (2022 Update)
This presentation covers ion beam analytical tools, their capabilities, and uses. It provides an overview of ion sources, examines emerging trends in surface analysis, and assesses the potential of ultrafast lasers for panoscopic patterning, athermal ablation, and elemental analysis. It compares and contrasts liquid metal, gas field, and plasma sources and presents examples highlighting the capabilities of FIB-SIMS and FIB-SEM Auger/XPS surface analysis techniques. It also introduces computationally guided microspectroscopy (CGM) and assesses its potential impact on multi-variant analysis, point spread deconvolution, and compressed sensing.
Proceedings Papers
ISTFA2021, ISTFA 2021: Tutorial Presentations from the 47th International Symposium for Testing and Failure Analysis, n1-n72, October 31–November 4, 2021,
Abstract
View Papertitled, Charged Particle Systems: Fundamentals and Opportunities
View
PDF
for content titled, Charged Particle Systems: Fundamentals and Opportunities
This presentation covers ion beam analytical tools, their capabilities, and uses. It provides an overview of ion sources, examines emerging trends in surface analysis, and assesses the potential of ultrafast lasers for panoscopic patterning, athermal ablation, and elemental analysis. It compares and contrasts liquid metal, gas field, and plasma sources and presents examples highlighting the capabilities of FIB-SIMS and FIB-SEM Auger/XPS surface analysis techniques. It also introduces computationally guided microspectroscopy (CGM) and assesses its potential impact on multi-variant analysis, point spread deconvolution, and compressed sensing.
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 451-454, November 1–5, 2015,
Abstract
View Papertitled, Root Cause Analysis of a Connector Time-Delayed Fracture
View
PDF
for content titled, Root Cause Analysis of a Connector Time-Delayed Fracture
A land-grid array connector, electrically connecting an array of plated contact pads on a ceramic substrate chip carrier to plated contact pads on a printed circuit board (PCB), failed in a year after assembly due to time-delayed fracture of multiple C-shaped spring connectors. The land-grid-array connectors analyzed had arrays of connectors consisting of gold on nickel plated Be-Cu C-shaped springs in compression that made electrical connections between the pads on the ceramic substrates and the PCBs. Metallography, fractography and surface analyses revealed the root cause of the C-spring connector fracture to be plating solutions trapped in deep grain boundary grooves etched into the C-spring connectors during the pre-plating cleaning operation. The stress necessary for the stress corrosion cracking mechanism was provided by the C-spring connectors, in the land-grid array, being compressed between the ceramic substrate and the printed circuit board.