Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-13 of 13
X-ray photoelectron spectroscopy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2023, ISTFA 2023: Conference Proceedings from the 49th International Symposium for Testing and Failure Analysis, 209-213, November 12–16, 2023,
Abstract
View Paper
PDF
Sulfur corrodes silver metal in a continuous reaction. This corrosion is also found in semiconductor industry processes for the application of silver into Backside Grinding & Backside Metal (BGBM). In this paper two experiments were conducted for the sulfide corrosion behavior in a Circuit Probing (CP) clean room environment. They were Mixed Flowing Gas (MFG) and clean room environment exposure test. The MFG test of this research was conducted in a testing chamber with temperature, relative humidity, and concentration of H2S were carefully controlled and monitored. The MFG test conditions included the test temperature of 25°C, relative humidity of 75 %, and H 2 S gas concentration of 10 ppb. And the MFG tests lasted for over 72 hours. The X-ray photoelectron spectroscopy (XPS) was used to analyze the elements composition and Ag 2 S film thickness of the MFG test samples. The second test of this research was the direct exposure experiment. The silicon samples deposited with appropriate silver layer thickness were exposed in CP fab clean room environment with H 2 S concentration well monitored. The XPS analysis results of the corresponding exposure test samples indicated that the Ag 2 S contamination would continue to develop and wouldn't saturate. This would be indicative for the management of Ag 2 S contamination control. The results of MFG and Exposure test were help for Ardentec to setup Ag 2 S corrosion methodology. All the managements were applied into daily operation of the BGBM semiconductor products.
Proceedings Papers
ISTFA2016, ISTFA 2016: Conference Proceedings from the 42nd International Symposium for Testing and Failure Analysis, 493-501, November 6–10, 2016,
Abstract
View Paper
PDF
This paper outlines the physical analysis approach to investigate droplet-like copper discoloration defects. These defects are proven to be caused by differences in copper oxidation based on quantification results of the CuO and Cu2O chemical states using X-ray photoelectron spectroscopy (XPS) analysis.
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 295-297, November 1–5, 2015,
Abstract
View Paper
PDF
In authors’ previous paper, an OSAT [Optical, SEM (Scanning Electron Microscopy), Auger (Auger Electron Spectroscopy) and TEM (Transmission Electron Microscopy)] methodology was developed for qualification of microchip aluminum (Al) bondpads. Using the OSAT methodology, one can qualify microchip Al bondpads. In this paper, we will further study the NSOP (Non-Stick On Pad) problem on microchip Al bondpads. A new qualification methodology, OSSD [(Optical, SEM, and Surface and Depth profiling X-ray Photoelectron Spectroscopy (XPS)] will be proposed, in which XPS surface analysis is used to check the contamination level of fluorine and carbon on bondpad surfaces instead of Auger analysis. XPS depth profiling analysis will also be used to measure Al oxide thickness instead of TEM analysis. By using OSSD, Al bondpads can be qualified with both reduced costs and shortened turnaround times versus OSAT.
Proceedings Papers
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 496-501, November 9–13, 2014,
Abstract
View Paper
PDF
Aluminum-copper alloys are popular for many applications that take advantage of the combination of properties in the alloys. This paper describes the use of multiple advanced failure analysis tools to analyze the physical and chemical properties of Al-Cu alloy thin films.
Proceedings Papers
ISTFA2011, ISTFA 2011: Conference Proceedings from the 37th International Symposium for Testing and Failure Analysis, 414-418, November 13–17, 2011,
Abstract
View Paper
PDF
We investigated the swelling behavior of dry film photoresist in rinse process after development by varying the hardness of water. We inspected the appearance of sidewalls and the foot of the resist. We also measured the depth of once swollen resist using a FIB (focused ion beam) and analyzed the chemistry of the resist after rinse using an XPS (X-ray photoelectron spectroscopy). We experimentally proved that divalent cations such as Ca2+ and Mg2+ in hard water could be exchanged with Na+ on the resist surface and quench swelling of the exposed resist in rinse. This study indicates that the use of hard water in rinse process may result in better line definition and resolution in PCB (printed circuit board).
Proceedings Papers
ISTFA2010, ISTFA 2010: Conference Proceedings from the 36th International Symposium for Testing and Failure Analysis, 304-308, November 14–18, 2010,
Abstract
View Paper
PDF
Electrical resistance of M1/M3 stack for Aluminium based technology showed anomalous values when no Ti is inserted between AlCu and cap TiN. Process investigations lead to suspect formation of AlN layer at this interface. Blanket wafers were processed at different temperatures to reproduce the layer formation and characterize the film by numerous techniques including XPS and EELS-TEM profiling. Full use of the different results shows the formation of a very thin (a few nms) and highly resistive AlN layer at the cap TiN / AlCu interface as well as a thicker but less resistive AlN layer at the bottom TiN / AlCu interface. PVD process changes were attempted to reduce the M1/M3 button stack resistance. Modification of the N2/Ar flow ratio for TiN sputtering shows slightly more stoechiometric TiN with reduced stack resistance by 35%.
Proceedings Papers
ISTFA2005, ISTFA 2005: Conference Proceedings from the 31st International Symposium for Testing and Failure Analysis, 266-273, November 6–10, 2005,
Abstract
View Paper
PDF
X-ray photoelectron spectroscopy (XPS) is a very popular tool for identification of the chemical state of fluorine contamination on aluminum (Al) bond pads. To date, as far as the authors are aware the detailed microstructures of fluorine corrosion on bond pads have not been reported. This paper reports the microstructure evolution of fluorine corrosion on bond pads in a plastic box under specific environment conditions by using transmission electron microscopy (TEM), optical microscopy, focused ion beam and scanning electron microscopy (SEM). The elemental distributions and chemical bonding were performed by using Gatan Image Filter/TEM, energy dispersive X-ray/Scanning TEM (STEM), Auger electron spectroscopy and XPS, respectively. On Al pads with 35 atomic %, fluorine residual, corrosion was observed after around 10 days of storage and became more severe with time. The corrosion layers consist of nano-crystalline and amorphous for both single and double-layer structures.
Proceedings Papers
ISTFA2005, ISTFA 2005: Conference Proceedings from the 31st International Symposium for Testing and Failure Analysis, 274-282, November 6–10, 2005,
Abstract
View Paper
PDF
A failure analysis flow is developed for surface contamination, corrosion and underetch on microchip Al bondpads and it is applied in wafer fabrication. SEM, EDX, Auger, FTIR, XPS and TOF-SIMS are used to identify the root causes. The results from carbon related contamination, galvanic corrosion, fluorine-induced corrosion, passivation underetch and Auger bondpad monitoring will be presented. The failure analysis flow will definitely help us to select suitable methods and tools for failure analysis of Al bondpad-related issues, identify rapidly possible root causes of the failures and find the eliminating solutions at both wafer fabrication and assembly houses.
Proceedings Papers
Advanced Analytical Chemistry Techniques Enable Rapid, Cheap and Concise Electronic Failure Analysis
ISTFA2004, ISTFA 2004: Conference Proceedings from the 30th International Symposium for Testing and Failure Analysis, 457-464, November 14–18, 2004,
Abstract
View Paper
PDF
This article introduces several analytical chemistry techniques that are extremely useful in the electronics failure analysis (FA) laboratory, but are not normally found in FA laboratories. It presents the techniques in simple language and makes a case for the inclusion of chemists in the rapidly evolving and ever-shrinking world of microelectronic failure analysis. The article discusses the following techniques in terms of their applications, advantages, and operating principles: gel permeation chromatography, gas chromatography-mass spectrometry, Fourier transform-infrared spectroscopy, and electron spectroscopy for chemical analysis (ESCA). As we move into the world of nanotechnology, these techniques will become key in analyzing failures that cannot be visualized using traditional FA methods.
Proceedings Papers
ISTFA2004, ISTFA 2004: Conference Proceedings from the 30th International Symposium for Testing and Failure Analysis, 471-473, November 14–18, 2004,
Abstract
View Paper
PDF
Accurate characterization of the nitrogen concentration and distribution in ultra thin nitrided silicon gate oxide plays the same important role as the fabrication technology itself during the development of 90nm and beyond gate oxide manufacturing process. Based on the measurement results of XPS (X-ray photoelectron spectroscopy) as reference, a correlation study was taken between XPS and AES (Auger electron spectroscopy) data in this paper. The study shows that, by optimizing the experiment conditions of AES such as beam energy, beam current and take off angle, and introducing proper corrective factor, AES can be used as a useful and reliable characterization tool during the monitoring measurement of Nitrogen concentration in ultra thin (<2nm) nitrided silicon gate oxide.
Proceedings Papers
ISTFA2004, ISTFA 2004: Conference Proceedings from the 30th International Symposium for Testing and Failure Analysis, 474-481, November 14–18, 2004,
Abstract
View Paper
PDF
In failure analysis of wafer fabrication it is difficult to identify possible sources of carbon-related contaminants as most of them are from polymers, organic and complex compounds. In this paper, the fingerprints of EDX, FTIR, XPS and TOFSIMS techniques will be introduced so as to identify sources of carbon-related contaminants. For example, Si peak (1.740 keV) can be used as a fingerprint of EDX technique to identify the ink-related contaminant from the other carbon-related contaminants. FTIR spectra of more than 10 possible materials from wafer fab and assembly processes are discussed, which may be used as the fingerprints of FTIR technique to identify carbon-related contaminants. The C=O functional group and the PDMS (PolyDimethylSiloxane) are recommended as the fingerprints of XPS and TOF-SIMS techniques to identify source of carbon-related contaminants, respectively. In this paper, some application cases will be also discussed.
Proceedings Papers
ISTFA2002, ISTFA 2002: Conference Proceedings from the 28th International Symposium for Testing and Failure Analysis, 495-504, November 3–7, 2002,
Abstract
View Paper
PDF
Fluorine contamination on Al bondpads will result in corrosion, affect quality of bondpads and pose problem such as non-stick on pad (NSOP) during wire bonding at assembly process. In this paper, a fluorine contamination case in wafer fabrication will be studied. Some wafers were reported to have bondpad discoloration and bonding problem at the assembly house. SEM, EDX, TEM, AES and IC techniques were employed to identify the root cause of the failure. Failure analysis results showed that fluorine contamination had caused bondpad corrosion and thicker native aluminium oxide, which had resulted in discolored bondpads and NSOP. It was concluded that fluorine contamination was not due to wafer fab process, but was due to the wafer packaging foam material. XPS/ESCA and TOF-SIMS advanced tools were used to study the chemical and physical failure mechanism of fluorine-induced defects. An unknown Al compound was found using XPS technique and identified it as [AlF6]3- using electrochemical theories and TOF-SIMS technique. This finding was very significance, as it helped developing a theoretical electrochemical model for fluorine-induced corrosion and helped understanding of the mechanism of fluorine-induced corrosion on aluminium bondpads. It was found that fluorine contamination had formed [AlF6]3-on the affected bondpads and it had caused further electrochemical reactions and formed some new products of (NH4)+ and OH-. Then [AlF6]3- and (NH4)+ ions combined and formed a corrosive complex compound, (NH4)3(AlF6), while the OH- reacted with Al and caused further corrosion.
Proceedings Papers
ISTFA1996, ISTFA 1996: Conference Proceedings from the 22nd International Symposium for Testing and Failure Analysis, 239-241, November 18–22, 1996,
Abstract
View Paper
PDF
The p-n junction of a GaAs light emitting diode is fabricated using liquid phase epitaxy (LPE). The junction is grown on a Si doped (~10 18 /cm 3 ) GaAs substrate. Intermittent yield loss due to forward voltage snapback was observed. Historically, out of specification forward voltage (Vf) parameters have been correlated to abnormalities in the junction formation. Scanning electron (SEM) and optical microscopy of cleaved and stained samples revealed a continuous layer of material approximately 2.5 to 3.0 μm thick at the n-epi/substrate interface. Characterization of a defective wafer via secondary ion mass spectroscopy (SIMS) revealed an elevated concentration of O throughout the region containing the defect. X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) data taken from a wafer prior to growth of the epi layers did not reveal any unusual oxidation or contamination. Extensive review of the processing data suggested LPE furnace pressure was the obvious source of variability. Processing wafers through the LPE furnace with a slight positive H 2 gas pressure has greatly reduced the occurrence of this defect.