Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 42
Mass spectroscopy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ISTFA2022, ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis, 257-261, October 30–November 3, 2022,
Abstract
View Paper
PDF
Secondary ion mass spectrometry (SIMS) is a well-established method in semiconductor manufacturing process control and development for trace metal and organic contaminant detection, as well as for depth profiling of ultra-thin film stacks and total dopant concentrations. Using a focused ion beam (FIB) as the primary ion beam provides a versatile and highly sensitive analytical technique with lateral resolution down to a few tens of nanometers, an appropriate technique for targeted failure analysis on functional device structures. This paper presents an example to show the potential of FIB-SIMS to support failure analysis, concentrating on practical aspects of the technique.
Proceedings Papers
ISTFA2022, ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis, 396-397, October 30–November 3, 2022,
Abstract
View Paper
PDF
This paper describes the new Cameca Akonis secondary ion mass spectrometry (SIMS) tool, which was developed to fill a critical gap in semiconductor fabrication processes by providing high throughput, high precision detection for implant profiles, composition analysis, and interfacial data directly in the semiconductor manufacturing line. The system enables automation in the primary ion column to ensure repeatability across tools for fabrication-level process control and tool-to-tool matching.
Proceedings Papers
ISTFA2022, ISTFA 2022: Tutorial Presentations from the 48th International Symposium for Testing and Failure Analysis, n1-n76, October 30–November 3, 2022,
Abstract
View Paper
PDF
This presentation covers ion beam analytical tools, their capabilities, and uses. It provides an overview of ion sources, examines emerging trends in surface analysis, and assesses the potential of ultrafast lasers for panoscopic patterning, athermal ablation, and elemental analysis. It compares and contrasts liquid metal, gas field, and plasma sources and presents examples highlighting the capabilities of FIB-SIMS and FIB-SEM Auger/XPS surface analysis techniques. It also introduces computationally guided microspectroscopy (CGM) and assesses its potential impact on multi-variant analysis, point spread deconvolution, and compressed sensing.
Proceedings Papers
ISTFA2021, ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis, 40-43, October 31–November 4, 2021,
Abstract
View Paper
PDF
This paper presents the results of an investigation to gain a better understanding of the impact of wafer substrate copper (Cu) contamination on FinFET devices. A chip from a wafer free of Cu contamination and several chips near a Cu contaminated wafer edge were sampled for chemical, structural, and morphological analysis and electrical device performance testing. The contaminated wafer was also annealed at high temperature, trying to drive Cu diffusion further into the Si substrate. TEM analysis revealed that the Cu interacted with Si to form a stable η-Cu 3 Si intermetallic compound. SIMS analysis from the backside of the wafer detected no Cu even after most of the backside material was removed. Likewise, electrical nanoprobing showed no parametric drift in the FinFETs near the edge of the wafer, comparable to device behavior in a Cu-free Si substrate. These results indicate that the formation of η-Cu 3 Si with a well-defined crystalline structure and stable stoichiometry immobilizes Cu diffusion in the Si substrate. In other words, the impact of Cu diffusion in silicon has no effect on device performance as long as η-Cu 3 Si does not form in the FinFET channel or short any structures within the chip.
Proceedings Papers
ISTFA2021, ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis, 44-48, October 31–November 4, 2021,
Abstract
View Paper
PDF
This paper provides an overview of the semiconductor analysis process at BMW. It explains how it was developed and how it differs from the failure analysis process used in semiconductor fabs. It describes the general process flow from first analyses through descending levels of localization at different length scales. It discusses sample preparation procedures, test methods and equipment, and advanced techniques. In the work presented here, the authors explain how they combined ToF-SIMS with STEM lamella preparation in a FIB-SEM, which allowed them to correlate concentration variances in an underlying layer with surface anomalies discovered during light microscope inspection.
Proceedings Papers
ISTFA2021, ISTFA 2021: Tutorial Presentations from the 47th International Symposium for Testing and Failure Analysis, n1-n72, October 31–November 4, 2021,
Abstract
View Paper
PDF
This presentation covers ion beam analytical tools, their capabilities, and uses. It provides an overview of ion sources, examines emerging trends in surface analysis, and assesses the potential of ultrafast lasers for panoscopic patterning, athermal ablation, and elemental analysis. It compares and contrasts liquid metal, gas field, and plasma sources and presents examples highlighting the capabilities of FIB-SIMS and FIB-SEM Auger/XPS surface analysis techniques. It also introduces computationally guided microspectroscopy (CGM) and assesses its potential impact on multi-variant analysis, point spread deconvolution, and compressed sensing.
Proceedings Papers
ISTFA2019, ISTFA 2019: Conference Proceedings from the 45th International Symposium for Testing and Failure Analysis, 29-34, November 10–14, 2019,
Abstract
View Paper
PDF
This paper discusses the implementation of GHz-Scanning Acoustic Microscopy (GHz-SAM) into a wafer level scanning tool and its application for the detection of delamination at the interface of hybrid bonded wafers. It is demonstrated that the in-plane resolution of the GHz-SAM technique can be enhanced by thinning the sample. In the current study this thinning step has been performed by the ion beam of a ToF-SIMS tool containing an in-situ AFM, which allows not only chemical analysis of the interface but also a well-controlled local thinning (size, depth and roughness).
Proceedings Papers
ISTFA2019, ISTFA 2019: Conference Proceedings from the 45th International Symposium for Testing and Failure Analysis, 53-59, November 10–14, 2019,
Abstract
View Paper
PDF
This presentation demonstrates how Time-of-Flight Secondary Ion Mass Spectroscopy provides unique information to identify suspect counterfeit semiconductor devices. An example is shown where the epitaxial layers of a light emitting device (LED) do not match those of the exemplar. Keywords: Secondary Ion Mass Spectroscopy, SIMS, counterfeit detection, LED, Light emitting diode.
Proceedings Papers
ISTFA2019, ISTFA 2019: Conference Proceedings from the 45th International Symposium for Testing and Failure Analysis, 426-429, November 10–14, 2019,
Abstract
View Paper
PDF
Contamination and particle reduction are critical to semiconductor process control. Lots of failure analysis had been focused on finding the root cause of the particle and contamination. The particle and contamination effect were also easily found in circuit probing (CP) process, and therefore induced yield loss and wafer scrap. In the first part of this paper, an oven contamination case was studied. The second part of this paper focus on oven contamination monitoring. In the beginning, a die flying failure was papered at the stage of blue tape and die sawing. This event clearly indicated bad adhesion between die and plastic tape. This bad adhesion was suspected to be a particle/contamination layer formed on bad die surface. Three failure analysis (FA) approaches were performed to find out the root cause. The SEM/EDS result identified the main elements of big particle, but that is insufficient to identify the root cause. The OM/FTIR, however, showed the contamination may be related to polydimethylsiloxane (PDMS). The last failure analysis was the time of fly Secondary Ion Mass Spectrometer (TOF-SIMS), the result confirmed that there was a thin PDMS layer formed on the contaminated bad die surface. The high temperature CP process induced PDMS is believed to be the contamination root cause. In order to prevent the oven contamination event, a methodology based on contact angle and wettability of Si matrix sample was set up for regular monitor in oven operation. The details of contact angle test (CAT) sample preparation, measurement and analysis results were also discussed in this paper.
Proceedings Papers
ISTFA2017, ISTFA 2017: Conference Proceedings from the 43rd International Symposium for Testing and Failure Analysis, 59-66, November 5–9, 2017,
Abstract
View Paper
PDF
This paper describes the failure analysis methods used to characterize micro cracks that resulted in laser vias of printed circuit boards (PCBs) through case studies of destructive failure analysis. Defects such as cracks in laser vias of PCBs can cause open or low leakage failure mode of module due to improper cleaning during the PCB process, natural oxide films such as brown oxide, or physical forces by use. Therefore, it’s difficult to identify the causes of these phenomena unless proper analytical techniques are used. In this study, multiple analytical techniques are employed to characterize micro cracks in laser vias. The destructive analysis with cross section and ion milling process is used to detect and inspect an accurate micro crack phenomenon of laser via. The characterization analysis using TEM, EDX and SIMS equipment after separating laser vias from a PCB is used to analyze failure cause of micro crack in laser via. This paper will be concluded with a discussion about what physical analysis methods should be used to analyze the causes of micro cracks for laser vias of PCBs.
Proceedings Papers
ISTFA2017, ISTFA 2017: Conference Proceedings from the 43rd International Symposium for Testing and Failure Analysis, 123-127, November 5–9, 2017,
Abstract
View Paper
PDF
In this paper, impact of carbon on threshold voltage in MOSFET-based device is studied by 3D-atom probe tomography (APT). Carbon is one of most difficult contaminants incorporated from fab-environment to be detected by typical analytical techniques such as TEM-EDS or SIMS. Here, we successfully demonstrated the detection of carbon segregated at gate oxide/Si substrate interface using 3D-APT with single-atom sensitivity and sub-nanometer spatial resolution. It was found that the carbon contaminants have significant effect on the threshold voltage shift (ΔVth), in which ΔVth increases slightly with increasing carbon concentration. The deterioration of device performance is explained by means of which the positively ionized carbons at the interface acting as additional positive charges affecting the inversion to n-channel.
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 211-216, November 1–5, 2015,
Abstract
View Paper
PDF
The accuracy of ion implantation is very important in semiconductor manufacturing and will directly affect the performance of the individual devices and even the whole chip. The deviations of ion implantation energy, dose and angle often result from abnormality of implant equipment or process design limit. The information of ion implantation energy, dose and angle can be qualitatively and quantitatively analyzed by SIMS (Secondary Ion Mass Spectrometry) [1], which provides a way to diagnose ion implanter issue. Based on SIMS analysis results, we can judge whether ion implanter meets the requirements and whether the process design achieves the expected goal. In this paper, we report a SIMS data analysis method determine the deviation of ion implantation angle. A term of deviation rate is defined and a related calculation method was introduced, which is proportional to the deviation angles of the ion implanter. Then, a statistical analysis on a large number of data of deviation rates and ion implantation angles showed that the sampling data followed normal distribution, and thus the corresponding 3 sigma could be obtained. Using the determined 3 sigma range of the deviation rates, we can define the acceptable range for deviation rate. Further, we can use the actual deviation rate to judge if the implant equipment needs maintenance or not, or suggest the direction for improvement. Finally, we set up an oriented and quantitative optimization method of angle deviation by the full mapping of SIMS depth profiles, which can directly set the relationship between the angle deviation and the adjustment parameters of ion implantation disk (Δ alpha, Δ beta). The equipment’s maintenance time and cost can thus be minimized. This method can be used as early detection to the abnormity of ion implant equipment.
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 507-512, November 1–5, 2015,
Abstract
View Paper
PDF
FA cannot consist of simply jumping to conclusions. The FA process is validated through correlation with the initial failure and through interpretation of the obtained results, subjective by definition. This paper illustrates the difficulty of analyzing complex failures caused by multiple factors, including wafer fabrication, assembly, and application conditions. Inter-Layer Dielectric (ILD) delamination was experienced on various ICs from the same 250nm technology. A complete set of techniques (C-SAM, laser and optical microscopy, SEM, FIB cross-sections, TEM, EFTEM, SIMS, Auger, delineation) was used as different pieces of the same puzzle to reveal the multiple factors contributing to the ILD delamination failures. Due to the subtle nature of some of the underlying causes, defining an accurate FA approach with appropriate sample preparation and accurate device traceability was critical to understanding this complex, multivariate issue.
Proceedings Papers
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 166-171, November 9–13, 2014,
Abstract
View Paper
PDF
In this study, a comprehensive investigation of the Ag-Al bond degradation mechanism in an electrically failed module using the argon ion milling, scanning electron microscopy (SEM), dual beam focused ion beam-SEM, scanning transmission electron microscopy energy dispersive x-ray spectroscopy, and time-of-flight secondary ion mass spectrometry is reported. It is found that the bond degradation is due to the galvanic corrosion in the Ag-Al bonding area. Specific attention is given to the information of microstructures, elements, and corrosive ions in the degraded bond. In this study, it is believed that the Ag-Al bond degradation is highly related to the packaging designs.
Proceedings Papers
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 496-501, November 9–13, 2014,
Abstract
View Paper
PDF
Aluminum-copper alloys are popular for many applications that take advantage of the combination of properties in the alloys. This paper describes the use of multiple advanced failure analysis tools to analyze the physical and chemical properties of Al-Cu alloy thin films.
Proceedings Papers
ISTFA2013, ISTFA 2013: Conference Proceedings from the 39th International Symposium for Testing and Failure Analysis, 427-429, November 3–7, 2013,
Abstract
View Paper
PDF
Contamination in the gate oxide layer is the most common effect which cause the gate oxide integrate (GOI) issue. Dynamic Secondary Ion Mass Spectrometry (SIMS) is a mature tool for GOI contamination analysis. During the sample preparation, all metal and IDL layers above poly should be removed because the presence of these layers added complexity for the subsequent SIMS analysis. The normal delayering process is simply carried out by soaking the sample in the HF solution. However, the poly surface is inevitably contaminated by surroundings even though it is already a practice to clean with DI rinse and tape. In this article, TOFSIMS with low energy sputter gun is used to clean the sample surface after the normal delayering process. The residue signals also can be monitored by TOF SIMS during sputtering to confirm the cross contamination is cleared. After that, a much lower background desirable by dynamic SIMS. Thus an accurate depth profile in gate oxide layer can be achieved without the interference from surface.
Proceedings Papers
ISTFA2012, ISTFA 2012: Conference Proceedings from the 38th International Symposium for Testing and Failure Analysis, 290-292, November 11–15, 2012,
Abstract
View Paper
PDF
Threshold Voltage (Vt) of MOSFET controls transistor’s on and off state. Vt is usually depends on gate oxide thickness and operating temperature. Systematic failure analysis for a Vt shift issue, should also consider the channel doping which affects the inversion layer formation. In this article, the failure case of a shift in the Vt of a Power MOSFET V is studied. Secondary Ion Mass Spectrometry (SIMS) is found to be the most direct way for detecting any abnormality in the channel doping profiles. A comprehensive simulation is performed showing that the Phosphorus level diffusion from substrate was so high that it affects the doping concentration of channel.
Proceedings Papers
ISTFA2011, ISTFA 2011: Conference Proceedings from the 37th International Symposium for Testing and Failure Analysis, 112-117, November 13–17, 2011,
Abstract
View Paper
PDF
In this paper, a comprehensive analysis methodology for gate oxide integrity (GOI) failure using combined FA techniques is proposed. The current method integrates the failure analysis flow we previously reported with a new flow proposed in this paper. The method is applicable to a wide range of GOI failure cases and has been used in analyzing many product wafers with GOI failure. In particular, there is one wafer with GOI failure that results from known failed process machines. This wafer could be readily analyzed with this new method to identify the root causes. The newly proposed flow is based on our previous report on GOI failure analysis, but the detection limit of contamination elements was significantly improved. The enhancement of detection limit is mainly attributable to the utilization of Vapor Phase Decomposition and Inductively Coupled Plasma Mass Spectrometry (VPD ICP-MS). The ICP-MS technique is highly sensitive and capable of simultaneously measuring a large number of elements at very low concentration level in the range of ppb (part per billion) to ppt (part to trillion). This enhanced sensitivity enables effective investigation of contamination caused by specific machines. A case study of GOI failure investigated by the proposed new method will be discussed in detail. In the study, Al, Fe, Mo and Sn contamination from a suspected tool were detected by ICPMS, followed by confirmation by Secondary Ion Mass Spectrometry (SIMS) on the affected product wafers. Failurepart isolation investigations of the affected diffusion furnace revealed that the root cause of the failure is due to a defective gas flow valve.
Proceedings Papers
ISTFA2011, ISTFA 2011: Conference Proceedings from the 37th International Symposium for Testing and Failure Analysis, 185-188, November 13–17, 2011,
Abstract
View Paper
PDF
In this paper, we will describe a low yield case which revealed itself as leakage failures near the wafer edge. A systematic problem solving approach was used based on the application of a variety of FA techniques such as electrical curve tracing, Spreading Resistance Probing (SRP), Secondary Ion Mass Spectrometry (SIMS), and Chemical Analysis coupled with extensive Fab investigations. These techniques transformed an invisible defect into a visible one, leading to a full resolution of the issue with good understanding of the failure mechanism and the root cause. We will show that the wafer edge leakage was the result of N-type contamination of the substrate due to Phosphorus outgassing from the V-ring during the high temperature Argon anneal process.
Proceedings Papers
ISTFA2011, ISTFA 2011: Conference Proceedings from the 37th International Symposium for Testing and Failure Analysis, 345-348, November 13–17, 2011,
Abstract
View Paper
PDF
A particular failure analysis case where phosphorous contamination occurred in arsenic-implanted Si is presented. Time-of-Flight secondary ion mass spectroscopy (TOF-SIMS) can be used for fast diagnosis of this contamination which shows 300% surface density change relative to the baseline. It is found that the cause of the phosphorous contamination is due to a combination of implanter chamber re-deposit cross contamination and rapid thermal annealing (RTA) process induced drive-in effect.
1