Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Qualification
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2021, ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis, 80-83, October 31–November 4, 2021,
Abstract
View Papertitled, SRAM Bitcell Defect Identification Methodology Using Electrical Failure Analysis Data
View
PDF
for content titled, SRAM Bitcell Defect Identification Methodology Using Electrical Failure Analysis Data
Static random access memory (SRAM) can occupy up to 90% of the die surface in a microprocessor and is often laid out with even more aggressive design rules than logic circuitry, which makes it more prone to manufacturing defects and more sensitive to process variations. As a result, SRAM is often chosen to be the process qualification vehicle during technology development and the yield learning vehicle during product manufacturing. Consequently, fast and accurate analysis of SRAM failure is critical to success on many levels. In this paper, we present a defect identification method that combines design for test (DFT) features, direct bitcell access (DBA), and nondestructive fault isolation techniques. With examples and case studies, it is shown how the approach makes use of electrical failure analysis data to greatly reduce the cycle time of root cause identification in the early stages of new technology development.
Proceedings Papers
ISTFA2008, ISTFA 2008: Conference Proceedings from the 34th International Symposium for Testing and Failure Analysis, 332-338, November 2–6, 2008,
Abstract
View Papertitled, Dynamic Laser Stimulation Technique for Device Qualification Process
View
PDF
for content titled, Dynamic Laser Stimulation Technique for Device Qualification Process
A key point to guarantee electronic device quality is device qualification. This part of the process is a significant contributor to the time and cost of the development and production of any electronic device. A device is required to perform a task and its operational lifetime is a key issue for the end user. The more sensitive the qualification technique is, the faster marginalities in the device parameters could be observed. Dynamic Laser Stimulation techniques fill this requirement and could be used in conjunction with traditional qualification procedures.