Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Model quality management
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2022, ISTFA 2022: Tutorial Presentations from the 48th International Symposium for Testing and Failure Analysis, s1-s76, October 30–November 3, 2022,
Abstract
PDF
This presentation is an introduction to machine learning techniques and their application in semiconductor failure analysis. The presentation compares and contrasts supervised, unsupervised, and reinforcement learning methods, particularly for neural networks, and lays out the steps of a typical machine learning workflow, including the assessment of data quality. It also presents case studies in which machine learning is used to detect and classify circuit board defects and analyze scanning acoustic microscopy (SAM) data for blind source separation.
Proceedings Papers
ISTFA2021, ISTFA 2021: Tutorial Presentations from the 47th International Symposium for Testing and Failure Analysis, b1-b40, October 31–November 4, 2021,
Abstract
PDF
This presentation is an introduction to machine learning techniques and their application in semiconductor failure analysis. The presentation compares and contrasts supervised, unsupervised, and reinforcement learning methods, particularly for neural networks, and lays out the steps of a typical machine learning workflow, including the assessment of data quality. It also presents case studies in which machine learning is used to detect and classify circuit board defects and analyze scanning acoustic microscopy (SAM) data for blind source separation.